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Abstract. We investigated a real-valued Negative Selection Algorithm 
(NSA) for fault detection in man-in-the-loop aircraft operation. The de-
tection algorithm uses body-axes angular rate sensory data exhibiting 
the normal flight behavior patterns, to generate probabilistically a set of 
fault detectors that can detect any abnormalities (including faults and 
damages) in the behavior pattern of the aircraft flight. We performed 
experiments with datasets (collected under normal and various simu-
lated failure conditions) using the NASA Ames man-in-the-loop high-
fidelity C-17 flight simulator. The paper provides results of experi-
ments with different datasets representing various failure conditions.  

1   Introduction 

Early detection of a fault or damage of aircraft subsystems is very crucial for its con-
trol and maneuver during the flight [5, 15]. These events include sudden loss of con-
trol surfaces, engine failure, and other components that may result in abnormal flight 
operating conditions. Monitoring and detection of such events are necessary to 
achieve acceptable flight performance and higher flight survivability under abnormal 
conditions. There are several techniques available for aircraft fault accommodation 
problems [2-3, 11, 13] and for fault detection and isolation issues [6, 16]. This work 
investigated an immunity-based approach that can detect a broad spectrum of known 
and unforeseen faults. The goal is to apply the immunity-based fault detection algo-
rithm to improve the fault tolerance capabilities of the existing Intelligent Flight Con-
troller (IFC) architecture [11, 13].   
 

Prior studies have established the benefits of intelligent flight control [2]. How-
ever, one area of weakness that needed be strengthened was the control dead band 
induced by commanding a failed surface. Since the IFC approach uses fault accom-
modation with no detection, the dead band, although reduced over time due to learn-
ing, was present and caused degradation in handling qualities. This also makes it 
challenging for outer loop control design. If the failure can be identified, this dead 



band can further be minimized to ensure rapid fault accommodation and better han-
dling qualities [12, 13, 15]. 

2   Real-Valued Negative Selection (RNS) Algorithm 

The negative selection algorithm [9] is based on the principles of self-nonself dis-
crimination in the immune system (Fig. 1 shows the concept of self and nonself 
space).  This negative selection algorithm can be summarized as follows (adopted 
from [7]): 
 

• Define self as a collection S of elements in a feature space U, a collection 
that needs to be monitored. For instance, if U corresponds to the space of 
states of a system represented by a list of features, S can represent the subset 
of states that are considered as normal for the system. 

• Generate a set F of detectors, each of which fails to match any string in S. 
An approach that mimics the immune system generates random detectors 
and discards those that match any element in the self set. However, a more 
efficient approach [8] tries to minimize the number of generated detectors 
while maximizing the covering of the nonself space. 

• Monitor S for changes by continually matching the detectors in F against S. 
If any detector ever matches, then a change is known to have occurred, as 
the detectors are designed not to match any representative samples of S. 

 

 

Figure 1. The figure illustrates the concept of self and nonself in a feature space. Here F1, F2, 
etc. indicate different fault conditions represented by detectors. 

 



The above description is very general and does not say anything about the repre-
sentation of the problem space and the type of matching rule is used. It is, however, 
clear that the algorithmic complexity of generating good detectors can vary signifi-
cantly, which depends on the type of problem space (continuous, discrete, mixed, 
etc.), detector representation scheme, and the rule that determines if a detector 
matches an element or not. Most of the research works on the NS algorithm have 
been restricted to the binary matching rules like r-contiguous [9]. The primary reason 
for this choice is ease of use, and there exist efficient algorithms to generate detec-
tors, exploiting the simplicity of the binary representation and its matching rules [8].  
However, the scalability issue has prevented it from being applied more extensively. 

 
We adopted a real-valued NS (RNS) algorithm, which tries to alleviate the limita-

tions previously mentioned, while using the structure of the higher-level-
representation to speed up the detector generation process. The real-valued NS algo-
rithm applies a heuristic process that changes iteratively the position of the detectors 
driven by two goals: to maximize the coverage of the nonself subspace and to mini-
mize the coverage of the self samples.  

2.1   Details of the RNS Algorithm -- Detector Generation phase: 

The RNS detector generation starts with a population of candidate detectors, which 
are then matured through an iterative process. In particular, the center of each detector 
is chosen at random and the radius is a variable parameter which determines the size 
(in m-dimensional space) of the detector. The basic algorithmic steps of the RNS 
detector generation algorithm are given in Fig. 2, and some computational details of 
are illustrated in Figs. 3(a)-(d). 
  

At each iteration, first, the radius of each candidate detector is calculated, and the 
ones that fall inside self region are moved (i.e. its center is successively adjusted by 
moving it away from training data and existing detectors). The set of nonself detec-
tors are then stored and ranked according to their size (radius). The detectors with 
larger radii (and smaller overlap with other detectors) are considered as better-fit and 
selected to go to the next generation. Detectors with very small radii, however, are 
replaced by the clones of better-fit detectors. The clones of a selected detector are 
moved at a fixed distance in order to produce new detectors in its close proximity. 
Moreover, new areas of the nonself space are explored by introducing some random 
detectors. The whole detector generation process terminates when a set of mature 
(minimum overlapping) detectors are evolved which can provide significant coverage 
of the nonself space. 
 

 
 



  
Figure 2: Flow diagram showing the algorithmic steps for the real-valued negative 

selection algorithm.  
 

 
The purpose of the fault detection is to identify which states of a system are normal 
(self) and which are faulty. The states of a system are represented by a set of control 
variables which can exhibit the current and past system behavior. The actual values of 
these variables are scaled or normalized in the range [0.0, 1.0] in order to define the 
self-nonself space with a unit hypercube. 

 
A detector is defined as d = (c, rd), where c= (c1, c2,…, cm) is an m-dimensional 

point that corresponds to the center of a unit hypersphere with  rd as its radius. The 
following parameters are used for the detector generation process: 

 
 rs: threshold value (allowable variation) of a self point; in other words, a point at a 

distance greater than or equal to rs from a self sample is considered to be abnormal. 
  
α: variable parameter to specify the movement of a detector away from a self sam-

ple or existing detectors. 
 
ξ: maximum allowable overlap among the detectors, which implicates that allow-

ing some overlap among detectors can reduce holes in the nonself coverage. 



 
2.1.1 Calculating the detector radius: We used the Minkowski distance to meas-

ure the distance (D) between two points x and y, which is defined as 
 

λλ /1)||(),( ∑ −= ii yxyxD  
 
      where x= { x0, x1,… x N-1} and y = { y0,y1,… y N-1}. The Minkowski distance 
with λ = 2 is equivalent to Euclidean Distance. 
 

 
(a) Calculate detector radius       (b) Moving a detector            (c) Cloning a detector 
 
Figure 3: Illustrate different computational steps used during the detector maturation process. 
(a) Shows a way to calculate and update the radius of a detector (b) If a candidate detector 
overlaps with an existing detector (or self points), then the candidate detector (i.e. its center, c) 
is moved in the opposite direction to its nearest neighbor detector; (c) Given a mature detector, 
a clone is created at a distance equal to its radius, and the direction where it is created is se-
lected at random. 

 
This approach allows having variable size detectors to cover the nonself space. As 

shown in Fig. 3(a), if the distance between a candidate detector, d = (c, rd) and its 
nearest self point in the training dataset is D, then the detector radius is considered as 
rd = (D - rs).  However, if a detector is close to any edge of the hypercube and has a 
large radius, then only a portion of it is inside the space, and such a detector is re-
ferred to as an edge detector. If the value rd = (D - rs) is negative then it falls inside 
the self (radius); and this detector is expected to be discarded or moved in subsequent 
iteration.  

 
2.1.2 Moving detectors: Let d = (c, rd) represents a candidate detector and dnearest 

= (cnearest, rd
 nearest) is its nearest detector (or a self point), then the center of d is moved 

such that 
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     where dir = c - cnearest, and ||⋅|| denotes the norm of a m-dimensional vector (Fig. 
3(b)). Accordingly, if a detector overlaps significantly with any other existing detec-
tors, then it is also moved away from its nearest neighbor detector. In order to guaran-
tee the convergence of this process, an exponential decay function is used for the 
moving parameter (α). 

 
2.1.3 Detector Cloning and Random Exploration: At every generation, a few bet-
ter-fitted detectors are chosen to be cloned. Specifically, let d = (cold, rd

 old) be a detec-
tor to be cloned and, say dclon = (cclon, rd

 clon), is a cloned detector whose center is lo-
cated at a distance rd

 old from d and whose radius is the same as that of the detector, d.  
Accordingly, the center of dclon is computed as 
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                  dir = cold - cnearest (see Fig. 3(c)), and where cnearest is the center of d’s near-
est detector. 

 
In addition, a few less-fit detectors are replaced by random detectors at each gen-

eration. This process allows the exploration of new regions of the nonself space, 
which may need to be covered. 

 
2.1.4 Evaluation of nonself detectors: Detectors which do not fall in the self re-

gion are sorted according to their size. A detector with large radius gets selected for 
the next generation population, if it has small overlap with existing detectors i.e. less 
than an overlapping threshold (ξ).   

 
Accordingly, the overlapping measure W of a detector is computed as the sum of 

its overlap with all other detectors as follows, 
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where w(d, d’) is the measured overlap between two detectors d = (c, rd) and d’ = 

(c, rd’); and is defined by ( )mddw 1)exp(),( −=′ δ , m is the dimension of the 
feature space, 
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The value of δ is considered to be bounded between 0 and 1; and D is the distance 
between two detector centers c and c’ as shown in Fig. 3(d). This overlapping meas-
ure seems to favor the detectors with bigger radii, i.e. detectors having larger cover-



age of the nonself space with minimum overlap among them. Accordingly, the closer 
the center of two detectors is, the higher the value of the overlapping measure w (d, 
d’). 

 
 

 
 
 
 

2.2   Testing phase: Detection process 

The detection process is straightforward -- the matured detectors are continually ex-
amined with new samples in test datasets. For example, the distance between a sam-
ple pattern, p = (cp, rs) and a detector, d = (c, rd) is computed as D (cp, c), where D 
(cp, c) is the distance between the sample pattern and the detector calculated in the 
same way as in the detector generation phase. If the distance, D < (rs + rd) then the 
detector d gets activated indicating possible fault. 

3. Fault Detection in Aircraft operation 

     There are many applications where the aircraft behavior monitoring for indicating 
flight subsystem fault/damage, detection of changes (in trends) in the operating con-
dition, etc. appears to be very useful [12].  We used a C-17 man-in-the-loop simula-
tion data for this study.  
 
     An aircraft typically has many dedicated primary and secondary control surfaces 
to maneuver the aircraft through space. In modern fly-by-wire aircraft, the pilot 
commands angular rates of the aircraft using a side stick device. Speed and altitude 
control is mostly achieved using auto pilot settings chosen by the pilot. The C-17 

Figure 3(d): The overlap between two detectors d and d’ is computed in terms of the dis-
tance (D) between their centres (c, c’) and radii (rd, rd’).  



aircraft, in addition to four engines, has a stabilizer, four elevators, two ailerons, eight 
spoiler panels, four flap sections, and two rudders for control. In the figure shown 
below, the pilot stick commands are shaped by a reference model to generate body-
axes roll, pitch, and yaw acceleration commands to the NASA Ames developed Intel-
ligent Flight Controller [11, 13]. The sensory feedback to the controller includes the 
body-axes angular rates, airspeed, altitude, and angle-of-attack. An error vector, 
computed using the difference between commanded and sensed body-axes angular 
rates, is used to drive the intelligent flight controller. For this study, data generated 
through piloted simulation studies using the C-17 simulator are used.  
 

 

Figure 4: The block diagram showing the integration of immunity-based Fault detection sys-
tem and intelligent flight control (IFC) system. 

We experimented with different detector generator schemes for real-valued nega-
tive selection algorithm for better detection of different faults. This fault detection 
system takes real-valued data set as input; extracts the important semantic information 
by applying data fusion and normalization techniques. The reduced information is 
then represented as a collection of strings, which forms the self set (normal patterns) 
that can be used to generate a diverse set of detectors. The set of detectors are subse-
quently used for detection of different type of faults (known and unknown faults).  
The aim is to find a small number of specialized detectors (as signature of known 
failure conditions) and a bigger set of generalized detectors for unknown (or possible) 
fault conditions. The output of the fault detection system will be provided to IFC for 
isolating the faulty control surface.  

4. Experiments and Results 

The data from the simulator is collected at the rate of 30 Hz per second. Since the 
data is from man-in-the–loop simulation, there is an extra control (the human pilot) 



that simply cannot be removed from the data. We considered three sets of in-flight 
sensory information—namely, body-axes roll rate, pitch rate and yaw rate—to detect 
five different simulated faults. The error rates are measured from the desired output 
of the reference model and the actual sensed output (as shown in Fig. 4). 

 
The training data set was created by taking all of the data until the moment of the 

failure. For both cases, this is a different amount of time which varies between 2-3 
seconds. The test data were generated by windowing the data 1.5 seconds before and 
1.5 seconds after the failure. As a result, the "normal" part of the test data looks simi-
lar to the training data for each case. It is to be noted that some of the entries are zero 
at the beginning of the data set, because the pilot has likely not entered a command to 
maneuver by then, and the aircraft would still be flying straight and level. 
 
4.1 Preprocessing Data: 

 
First, data are normalized where the actual values of the variables are scaled or nor-
malized to fit a defined range [0.0, 1.0] using the maximum and minimum (+/- 20% 
to normal data) value of each dimension in the data set. Any value above and below 
the defined max and min is considered as 1 and 0, respectively. Data window shift—
shifts the data based on the window shifting and data overlapping parameters. In 
these experiments, K-mean clustering is used to reduce the training dataset to im-
prove the time complexity of the detector generation process.  
 
4.2 Detector generation phase:  

 
The RNS algorithm takes as input a set of hyper-spherical detectors randomly distrib-
uted in the self/nonself space. The algorithm applies a heuristic process that changes 
iteratively the position of the detectors driven by the objective to maximize the cover-
age of the nonself subspace and to minimize their overlap, while not covering the self 
samples. The flow diagram for the proposed detector generation algorithm (RNS) is 
given in previous section (Fig. 2). 

 
The aim is to find a small number of specialized detectors (as signature of known 

fault conditions) and other generalized detectors for unknown (or possible) fault con-
ditions. 

 
4.3 Testing phase: 

 
After generating the detectors, the next step is to examine the effectiveness of detec-
tors in identifying various faults. We used the same preprocessing steps and distance 
measure during the testing phase as was used in generating detectors. If a detector 
gets activated with current pattern, a change in the behavior pattern is known to have 
occurred and an alarm signal is generated regarding the fault.  In particular, 
 



• For each fault condition: Combine all (or as many as possible) activated de-
tectors to form a small set of specialized fault detectors that can be labelled 
with specific fault type. 

 
• For rest of the detectors: Use clustering method to form different clusters 

with cluster centre and radius of the cluster to be labelled as probable (or 
possible) fault detectors 

 
Some of the generalized detectors can be used for detecting simulated faults during 

the testing phase, however, others may be considered as being useless and discarded.  
It is expected that a limited number of detector generated by NSA (initially) may not 
be sufficient to cover the entire space, so it may be necessary to change the number, 
their distribution and resolution in nonself space to provide system and condition 
specific fault detection capabilities. 

 
 

4.4 Results: 
 

The sensor parameters considered for these experiments include body-axes roll angle 
rate, pitch rate and yaw rate, where both expected and observed values are monitored 
and error rate (e) is calculated. If these error rates are abnormal, the NS fault detec-
tion algorithm should detect them indicating possible failures. The following graphs 
illustrate results of experiments with different failure conditions.  

 
Fig. 5 shows the error rate(e) for three sensory inputs that are considered as the 

normal operating conditions, and used to generate the detector set. Fig. 6 illustrates 
the performance of the detection system when tested with wing fault data, where this 
type of fault is manifested in roll error rate (starting at 300 time step). The graph also 
shows the number of detectors activated (upper bar chart) as significant deviations in 
data patterns appear. Fig. 7 displays similar results for the tail failure. It is to be noted 
that simulation data that have a full tail failure, show up first in the pitch axis as the 
pitch axis has very little coupling with the roll and yaw axes.  

 
 As this detector generation algorithm generates variably sized detectors to cover 

spaces within and outside self regions, Fig. 8 gives the number of detectors with dif-
ferent sizes in a typical run. In this case, more number of detectors is generated with 
radii ranging between 0.25-0.3. However, some of the detectors with larger radii are 
edge detectors, partially covering the nonself space.  

 
Table 1 gives the statistical results of 10 runs for two different faults—tail and 

wing damage. Here the number of detector generated is 368; when tested on two 
faulty data sets, the detection rates of 89% and 92% are observed with relatively 
small false alarm rates.  

 
 



Figure 5. Show error rates for three sen-
sory inputs (roll, pitch and yaw) that are 
considered as the normal data pattern. 

 
Figure 7: Test results indicating the detection of 
Tail 1 failure. 

Figure 6. Show the detection of a wing 
failure with number of activated detectors. 

Figure 8: Indicates different sized detectors that 
are generated in a typical run. 

 
 

   Table 1. Table shows some statistics of testing two different faults (tail and wing failure). 

Performance 
Detection date False alarm rate Type of 

Faults Mean S.D. Mean S.D 
Tail 89% 1.43 0.87% 0.45 

Wing 92% 1.67 0.98% 0.32 
 



 Fig. 9 shows the number of detectors activated for five different faults. We observed 
that a good number of detectors get activated in each fault case. There appears to be 
three possible reasons: first, because of allowing some overlap among detectors; 
second, faulty data may be clustered at several locations in the nonself space, and 
third, the same detectors may be activated for more than one fault cases. Fig. 10 
shows different false alarm rates with the change in number of detectors. It indicates 
that the false positive rate reduces as number of detectors increases; moreover, the 
increase in false negative is insignificantly small (up to 1.4%) at the same time. 
 

 

 
Figure 9:  Average number of detectors 
activated for each fault tested. 

 Figure 10. Shows the false alarm rates 
(both false positive and false negative) with 
change in number of detectors.  

 
 
5. Conclusions: 

 
There exist many techniques for aircraft failure detection [2-3,5-6,13,15]. One of the 
drawbacks of existing fault detection and isolation (FDI) based approaches is that 
they cannot detect unexpected and unknown fault types. The immunity-based ap-
proaches have been used in many applications including fault detection [1, 4, 17, 19, 
20], anomaly detection [14, 18], etc. We investigated a real-valued negative selection 
algorithm that could detect a broad spectrum of known and unforeseen faults. In this 
work, once the fault is detected and identified, a direct adaptive control system would 
use this detection information to stabilize the aircraft by utilizing available resources 
(control surfaces). The proposed intelligent fault detection algorithm is inspired by 
the principles of the biological immune system. This fault detection algorithm is a 
probabilistic approach (motivated by the negative selection mechanism of the im-
mune system) in order to detect deviations in aircraft flight behavior patterns. In par-
ticular, the detection system learns the knowledge of the normal flight patterns from 
sensory data, to generate probabilistically a set of (novel) pattern detectors that can 
detect any abnormalities (including faults) in the behavior pattern of the aircraft 
flight.  

 
In summary, the proposed method works as follows: 



 
Based on the dataset (given) of normal operating conditions, generate a set of fault 

detectors; the goal is, however, to evolve 'good' detectors that cover the nonself space. 
• A 'good' detector: 

o It must not cover self space. 
o It has to be as general as possible: the larger the volume, the better.  

• One detector may not be enough; instead, a set of detectors is required that 
can collectively cover the nonself space with minimum overlap. 

 
During the testing phase, we used the data collected during different fault condi-

tions: 
• Detectors that get activated (match) for each fault are labeled as specific 

fault detectors. These constitute a set of specialized detectors for identifying 
different class of faults. 

• It may be necessary to go through the detector optimization process: filter 
out some overlapping detectors, and merge some and generating new ones 
for better coverage. 

 
Some faulty conditions can be simulated (by changing some crucial, monitored pa-

rameters) in order to check which generalized detectors get activated. These detectors 
can also provide the knowledge of possible (unknown) faults. The goal is to achieve a 
certain level of damage control under any known fault or unknown abnormalities. 

 
The long-term goal is to use NSA to detect control surface area loss caused by 

damage (or failure) and other causes that may result in the departure of the aircraft 
from safe flight conditions. Once the failure is detected and identified, the Intelligent 
Flight Controller (IFC) then utilizes all remaining source of control power necessary 
to achieve the desired flight performance. 
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